企业: | 控制网 | 日期: | 2004-09-17 |
---|---|---|---|
领域: | 传感器 | 点击数: | 1430 |
李春 郑志强 1、引言 80年代末,随着机器人学、DAI和分布式系统的研究与发展,机器人已朝向分布式、系统化和智能化的方向发展.尤其是基于MAS的多机器人协作问题正受到越来越多的关注.目前智能体(Agent)还没有统一的定义,一般被认为是一个能作用于自身和环境,并能对环境做出反应的物理的或抽象的实体[1],是一个具有自主性、主动性、社会交互性及反应性的对象模型.MAS则是Agent的集合.每个Agent都是一个具有相同的问题求解方法的自治系统,能利用局部信息进行自主规划,并能通过规划推理解决局部冲突实现协作,从而完成与自身相关的局部目标.依据MAS的特性来组织和控制多个机器人,使之能够协作完成单个机器人无法完成的复杂任务[7~9]是机器人学研究领域的新课题,具有重要的理论和现实意义.国外一些著名研究有:ACTRESS、CEBOT、SWARM等系统。
我们要实现的系统是以多个移动机器人为控制对象,以开阔区域为试验环境,要完成多个随机散布的机器人排成指定队形的任务,每个机器人要有不同层次的合作能力.我们将机器人封装为Agent和车体模型两部分,其中Agent是广义的机器人控制器,车体模型是机器人的物理实体.这样,多机器人的合作就体现为多Agent的合作,各机器人依据其子目标,动态地规划各自的运动序列,在自主状态下采用自主行为,在冲突状态下采用合作行为,从而协作完成系统任务.本文就是基于这样的背景提出了系统原型. 2、合作机制与控制结构 群体的智能行为要求多机器人之间必须能够有效合作,这涉及多方面的问题,首先是如何组织机器人去完成任务,这是任务级的合作,体现为高层的组织形式与运行机制[2].多机器人间关系明确后,合作又体现为具体的运动协调规划与控制问题,这是控制级的合作,用来解决局部冲突. 根据系统任务的要求,我们选取协商和竞争的合作方式,实现如下合作机制:在任务层,实现了基于竞争的子任务指定;在行为层,通过采用动态优先级设定技术消解局部冲突,实现了资源的合理分配[3].
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1.我有以下需求: | |
|
|
2.详细的需求: | |
* | |
姓名: | * |
单位: | |
电话: | * |
邮件: | * |