企业简介

作为中国自动化领域的权威旗舰网络媒体,控制网创立于1999年7月,是中国举行的第十四届IFAC (International Federation of Automatic Control)大会的中国官方组织机构的唯一指定网站。控制网是中国自动化学会专家咨询工作 委员会(ECC)的秘书处常设之地。是北京自控在线文化传播有限公司开设的网站。

  • 公司类型:其他

联系方式
  • 控制网
  • 地址:北京市海淀区上地十街辉煌国际2号楼1504室
  • 邮编:100085
  • 电话:010-57116291 / 59813326
  • 传真:010-59813329
  • 网址:http://www.kongzhi.net
  • Email:mahongliang@kongzhi.net
  • 联系人:市场部
案例详细
标题无模型自适应控制技术在玻璃窑炉控制中的应用
技术领域
行业
简介本文介绍了一个基于无模型自适应控制器(MFA)的玻璃窑炉控制系统,讨论了控制系统的结构和使用特点。MFA在控制连续、非线性、多变量的工业过程中的成功应用,显示了无模型自适应控制的优点。
内容
1.问题的提出
        玻璃窑炉(见图1)是玻璃制品生产行业的关键设施,其生产玻璃的质量决定了玻璃制品的产量、质量和生产效能。玻璃窑炉有一个极其复杂的温度场,在进行生产时不但各处温度不同(见图2),而且同一处温度也会随时间而变化。影响窑炉玻璃温度的因素有环境温度、加料速度和数量、熔化池内部压力(负压或正压)、熔融玻璃的液位、燃烧室燃料的质量等。而熔化池和料道的温度控制是玻璃窑炉控制的关键因素。从控制的角度来看,玻璃窑炉的控制是一个“灰箱”问题,即无法确定所掌握的过程知识的精确程度。目前广泛应用的传统PID控制效果不好,经常出现系统失控问题。


图一  玻璃窑炉的平面结构示意图


2. 过程参数分析
    熔化池不仅要有足够高的温度以保证玻璃原料的熔化、澄清和均化,还要有一定的温度梯度,以促进玻璃液的流动、加速熔化和均化。同时,料道温度要十分稳定,以保证玻璃制品的生产质量。窑炉的控制参数包括温度、压力、液位、物料等,控制对象包括电控阀门、风机、电机等。这些参数是相互关联的,如加料的速度和数量直接影响到熔化池内部的液位值、各区的温度值;熔化池内部压力又会影响到燃料的燃烧效率从而影响温度值。对于单个参数,如温度控制,在连续作业的窑炉中,不同区域应保持不同温度设定值。由于以上原因,使用二型或三型仪表的单回路PID控制器对具体参数进行分区控制的效果不够理想,各控制器之间没有相互联系,各参数的变化无法沟通,对于温度控制这种大时间延迟的系统来说,一旦前区温度、压力、液位、加料量等参数发生较大变化时,料道控制器对料道温度的控制将无能为力,这将直接造成废品率上升,带来巨大的损失。因此窑炉的控制是一个复杂的控制系统,表现在:
(1)过程参数的时变性:熔化池的主要参数温度、液位、加料量、压力参数都随时间波动。例如在对温度极其敏感的料道区,前区温度的滞后以及电控阀门的开度变化和燃料管道压力的变化之间存在时间差,使得控制参数在超出一定的调节范围时,PID控制系统可能失控。
(2)负荷变化大:由于环境温度的变化和加料时产生的温度冲击,使得熔化池内温度负荷波动很大。另外,因燃料流量波动或管道压力变化而产生的热值变化给温度控制回路带来了很大的扰动。
(3)多点温度的关联控制:玻璃窑炉的燃烧室、熔化池、供料道等需要有不同的温度点,各温度点的控制是相互关联的。由于各区域之间相互影响,使用单输入单输出(SISO)控制器很难有效地控制这种多输入多输出(MIMO)的过程。
(4)参数的非线性:加料过程带来的冲击、燃气的流量和压力的变化、控制器执行机构(传感器、变送器、电气转换装置和阀门的开闭)延时和非线性变化的累积,造成整个系统的参数的非线性。PID控制或基于模型的控制器能在系统参数正常的情况下很好工作,但是一旦参数变化的范围在非线性区域就系统就失控了。
3.解决途径
     为了解决以上问题,我们采用无模型自适应控制技术(Model-Free Adaptive Control,MFA)来替代传统的PID控制方式。图3中显示了一个2输入2输出的无模型自适应控制器结构。无模型自适应控制(MFA)技术可以用于以下特性的系统[2]:(1)无需过程的精确的定量知识;(2)系统中不需要过程辨识机制;(3)不需要针对某一过程进行专用的控制器设计;(4)不需要复杂的手动参数调整;(4)闭环系统稳定性分析和判据能用于系统分析以确保系统的稳定性。由于这些特性,无模型自适应控制方式比原来的PID控制系统更适合玻璃窑炉控制。


图3  2*2MFA控制器
    MFA控制器中使用了所谓“刷新权值”的算法。即通过一些特定算法,缩小设定值和过程变量之间的偏差。这意味着当过程处于稳定状态时偏差接近零,不需要对MFA控制器的权值进行修改。
在这个系统中,MFA控制器装置由两路控制器C1、C2组成,系统中有4个子过程G11、G21、G12、G22,过程的总的输出变量y1、y2也用于主控制回路的反馈信号f1、f2。他们与设置值r1、r2比较来减少干扰d1、d2
其中有两个子过程的输出交叉相连用来减小过程变量(在实际应用中从子过程的输出是不测量的),系统中只有输出信号y1、y2能被测量。这样,MFA控制器的输出u1、u2 与过程输出y1、y2是关联的。一个输入的变化将引起两个输出变化。
4.窑炉的基本控制过程
    按区域划分,玻璃窑炉的温度检测有小炉、熔化池和料道,其中(1)小炉为燃料燃烧的地方,是熔化池的热力来源;(2)池炉是玻璃熔化、沉淀、澄清和均化的场所,对其温度要求是要有一定的温度梯度。由于直接为料道区提供原料,其温度的稳定对玻璃的生产有至关重要的作用,这里是窑炉控制监测的重点,至少需要三个温度检测点、一个压力检测点和一个液位检测点;(3)料道是玻璃制品生产的出口,为了保证玻璃制品的质量,料道温度控制分为三个区域,并分别有相应的温度控制点。从控制系统结构图上看(如图4,部分传感器及控制装置在图中没有标出)),这是一个多输入多输出系统。
    原有控制系统对池炉的三个温度控制点及压力只进行监测,用池炉的液位值来控制加料机的动作,即液位低于设定值时加料,高于设定值时停车。对料道三个区用三个单回路的PID控制器进行控制。这是一个容易实现的传统控制方式。然而系统必须在手动状态下进行启动,在参数波动大时也很难保持在自动控制状态下,因为对干扰很敏感,特别是当参数变化大时,系统经常振荡。


图4   窑炉控制系统结构图
    原有控制系统的主要问题是多变量控制系统分解成了一个个单变量系统,这在传统工业过程控制中是很普遍的。在新的MFA控制系统中,按多变量控制的准则(参数关系见图5),将进行下面改进:


图5   窑炉控制系统各参数相互关系的分析
(1)通过MFA控制器实现对小炉温度的控制。根据熔化池温度以及燃料管道压力情况,适当调整风机进气量,从而使小炉的温度稳定在设定值的范围内。
(2)对熔化池的控制:实现温度、压力、液位的联合控制。比如熔化池T1温度高时,适当增加加料量从而强制降低温度值,而加料量要受液位传感器的限制;对于由于温度高低造成的炉内压力变化,则通过调整烟道闸门的开度进行调整。同时将熔化池的参数变化情况,通过MFA控制系统传递给料道的温度控制系统,通过一定的参数设置(比如根据熔融玻璃的流速设置从熔化池到料道的时间),来对料道的温度值进行提前预判性的调整。
(3)对料道的控制不再采用单个参数的控制,而是通过MFA控制器,按一定的算法,实现对三个区域的联合调整,从而避免了采用单个参数PID控制时由于时滞造成的温度波动。作为辅助手段,对料道等重要区域的控制使用原有的PID控制作为备份。
    控制系统包含一套PLC逻辑控制和PID控制装置[3],两台运行Windows NT的PC。把Wonderware’s Intouch HMI软件安装于PC上用于数据接收和监控。CyboSoft公司的CyboCon软件安装在一台PC上以提供先进的控制方式。因为CyboCon是一个软件包产品,安装、配置和I/O接口都很容易配置。当使用MFA控制器时,只需要知道一些过程的控制类型和过程的粗略时间常数即可。CyboCon的控制器通过Intouch的软件连接到系统。操作者可以用面板和在Intouch或CyboCon控制屏幕上的趋势线来监控和改变控制器设置。系统运行后,MFA控制器就可立刻进入控制状态。操作人员能在PID控制、手动和MFA控制模式之间切换。一旦PC出现问题,PLC将很快接管控制。
5、结论
    MFA技术无需使用者对控制器进行专门设计,只要选择相应的控制器并简单地设定控制器参数就可以将MFA控制器投入使用。这是无模型自适应控制器与其它基于模型的先进控制器的一个主要区别,也是MFA控制器的主要优势。

参考文献
[1]J. Yuh and Jing Nie,W.C. Lee. Adaptive Control of Robot Manipulators Using Bound Estimation. Proceedings of the 1998 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems Victoria, B.C., Canada October 1998
[2]CyboCon User Manual, CyboSoft, General Cybemation Group Inc, March 1998.
[3] George Chcng and Qiang Wang. Model-Free Adaptive Control of Evaporators. CyboSoft, General Cybemation Group Inc.
[4]蔡自兴,徐光